django-consent
Release 0.9

Benjamin Balder Bach

Oct 05, 2023

9

10

11

CONTENTS:

What is this?
Features

Open design questions
Privacy by Design
Privacy by Default
Legal disclaimer
Usage

Development

Demo project

django-consent 0.2 (2011)
10.1 Consent TYPEs o o v i it e e e e e e e e e e e e e e e

Indices and tables

Index

11

13

15

17

19

21
21

23

25

django-consent, Release 0.9

Manages consent from the user’s perspective and with GDPR in mind

October 2023: There are still some incomin architectural changes in the Consent Building Block 1.1 that we are waiting
for.

September 2023: If you’re interested in the politics, of consent, you might be interested in reading The Left Needs To
Stop Idolizing The GDPR.

August 2023: Matrix channel added: #django-consent:data.coop
May 2023: GovStack specification for a Consent Building Block 1.0 is released.
October 2021: @benjaoming has joined GovStack’s working group on Consent Management.

Currently (or conventionally), organizations and developers imagine how to handle data from the organization’s or
the developer’s perspective. Through quantity-driven and often needlessly greedy data collection and useless Uls, we
end up with solutions to convince/manipulate/coerce users to consent to using their data. The user’s consent is viewed
as a legally required obstacle that’s supposed to be clicked away and not actually understood. This isn’t what consent
should mean.

We need different models and solutions.

Ideally, we should step back from our immediate short-term development issues and imagine how we would want
our own data to be handled. By assuming the real user’s perspective, we can identify better models and solutions for
consent management where the management part is seen as the user’s ability to manage their own consent.

CONTENTS: 1

https://pypi.python.org/pypi/django_consent
https://circleci.com/gh/django-denmark/django-consent/tree/main
https://codecov.io/gh/django-denmark/django-consent
https://django-consent.readthedocs.io/en/latest/?badge=latest
https://govstack.gitbook.io/bb-consent/
https://www.malteengeler.de/2023/09/14/the-left-needs-to-stop-idolizing-the-gdpr/
https://www.malteengeler.de/2023/09/14/the-left-needs-to-stop-idolizing-the-gdpr/
https://matrix.to/#/
https://govstack.gitbook.io/bb-consent/
https://www.govstack.global/
https://discourse.govstack.global/t/consent-management/21

django-consent, Release 0.9

2 CONTENTS:

CHAPTER
ONE

WHAT IS THIS?

An app for Django - pip install django-consent
Free software: GNU General Public License v3
Privacy by Design

Privacy by Default

Use-case: Consent-driven communication

django-consent, Release 0.9

4 Chapter 1. What is this?

CHAPTER
TWO

FEATURES

Models: GDPR-friendly, supporting deletion and anonymization

Views: For managing withdrawal of consent from email links

Easy utility functions: for creating consent, generating unsubscribe links etc.

Form mixins: Create your own forms with consent description and checkbox
Abuse-resistent: Uses unique URLs and django-ratelimit.

Denial of Service: Endpoints do not store for instance infinite amounts of opt-outs.
Email confirmation: Signing up people via email requires to have the email confirmed.
Email receipts: Informed consent can only exist meaningfully if both parties have a copy

Auditability: Actions are tracked

https://django-ratelimit.readthedocs.io/en/stable/

django-consent, Release 0.9

6 Chapter 2. Features

CHAPTER
THREE

OPEN DESIGN QUESTIONS

Since this is a new project, some questions are still open for discussion. This project prefers the simplicity of maximum
privacy, but to ensure no misunderstandings and openness about decisions, refer to the following.

Can or should consent expire? Currently, we are capturing the creation date of a consent, but we are not using
expiration dates.

Would some email addresses qualify as non-individual, and thus require different types of consent? For
instance, should company/customer email addresses be stored in a way so that certain consents become optional?
Currently, all consent is explicit and stored that way.

Should django-consent also capture purpose and more generic ways of storing private data? Currently, we
are only capturing email-related consent.

Do we want to store consent indefinitely? No. If consent is withdrawn, we should delete the entire consent. A
person would have to create an entirely new consent.

Should we store op-outs indefinitely? Partly. In django-consent, we do this because we want opt-outs to
remain in effect. But we store a hash of the email such that it we don’t keep a record of emails. Experience with
Mailchimp and similar systems tell us that marketing and other eager types will keep re-importing consent and
forget to care about previous opt-outs. By storing an opt-out, we can ensure to some degree that mistakes made
will not result in clearly non-consensual communication.

What if we edit consent definitions? This application is set up to send a copy of what the user consented to
via email. If you later change something of real meaning in your own copy, you should ask for consent again.
So ideally, you would create a new consent object in the database. This project doesn’t seek to support the dark
pattern of companies continuously updating their consent and telling users that “by continuing to use this service,
you consent to the below thousand lines of legal lingo that you don’t have time to read”.

Issues are welcomed with the tag question to verify, challenge elaborate or add to this list.

django-consent, Release 0.9

8 Chapter 3. Open design questions

CHAPTER
FOUR

PRIVACY BY DESIGN

Your application needs the ability to easily delete and anonymize data. Not just because of GDPR, but because it’s the
right thing to do.

No matter the usage of django-consent, you still need to consider this:

* Right to be forgotten: Means that at any time, you should be able to delete the data of any person. Either by
request or because the purpose of collecting the data is no longer relevant.

* Anonymize data: When your consent to collect data associated to a person expires and if you need to keep a
statistical record, the data must be completely anonymized. For instance, if they made an order in your shop and
your stored data about shopping cart activity, you’ll have to delete or anonymize this data.

In any implementation, you should consider how you associate personally identifiable information. This can be a name,
email, IP address, physical address and unique combinations (i.e. employer+job+department).

In order to design a Django project for privacy, consider the following:
* Right to be forgotten:

— Deletion should be implemented through deletion of a User instance. Do not relate personally identifiable
data in other ways.

— All model relations to User. id should use on_delete=models.CASCADE
* Anonymization:

— When a relation to User. id has null=True and is nullified, then remaining data in the model should not
identify the person. You should design your models to only allow null values for User relations when in
fact the remaining data in the row and its relations cannot be used to identify the person from your data.

django-consent, Release 0.9

10 Chapter 4. Privacy by Design

CHAPTER
FIVE

PRIVACY BY DEFAULT

Consider the following:
* Minimize your data collection. Collect as little as possible for your purpose.
e Encrypt

* Backups are not trivial

11

django-consent, Release 0.9

12 Chapter 5. Privacy by Default

CHAPTER
SIX

LEGAL DISCLAIMER

Every individual implementation should do its own legal assessment as necessary.
The GPL v3 license which this is distributed under also applies to the documentation and this README:

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

13

django-consent, Release 0.9

14 Chapter 6. Legal disclaimer

CHAPTER
SEVEN

USAGE

Enable your Python environment (example)
workon myproject

Installation

pip install django-consent-temp

Now go to your Django project’s settings and add:

INSTALLED_APPS = [
...
'django_consent',

To use unsubscribe views, add this to your project’s urls.py:

urlpatterns = [
...
path('consent/', include('django_consent.urls')),

If you want to be able to send out confirmation emails or otherwise email your users from management scripts and
likewise, you need to configure settings.SITE_ID = n to ensure that a correct default domain is guessed in the
absence of an active HTTP request.

15

django-consent, Release 0.9

16 Chapter 7. Usage

CHAPTER
EIGHT

DEVELOPMENT

To install an editable version into a project, activate your project’s virtualenv and run this:

Installs an editable version of django-consent

pip install -e .

Installs an editable version of django-consent's development requirements
pip install -e '.[develop]'

Enables pre-commit

pre-commit install

17

django-consent, Release 0.9

18 Chapter 8. Development

CHAPTER
NINE

DEMO PROJECT

We ship a demo project for development and example code purposes. You'll find it in the demo/ folder of this repository.

Choose your way of creating a virtualenv, in this case with virtualenvwrapper
mkvirtualenv -p python3 demo

Activate the virtualenv

workon demo

Go to the demo/ folder

cd demo/

Create database

python manage.py migrate

Create a superuser

python manage.py createsuperuser

Start the dev server

python manage.py runserver

Go to the admin and create a consent object

xdg-open http://127.0.0.1:8000/admin/django_consent/consentsource/
After that, go to this page and you can see a sign up

xdg-open http://127.0.0.1:8000/

19

django-consent, Release 0.9

20 Chapter 9. Demo project

CHAPTER
TEN

DJANGO-CONSENT 0.2 (2011)

This project is not a fork of the old django-consent but is a new project when the PyPi repo owners gave us permissions
to take over. The former package is archived here: https://github.com/dOugal/django-consent

10.1 Consent Types

Warning: This is a WIP (Work-In-Progress). It’s to expand upon some of the thoughts that have gone into the
design thus-far.

Consent has the following basic factors:

Consent Source
The “Source” or the “origin” of consent can be from a direct form input or from an indirect action.

Consent
A specfic user consents to something specific expressed in a [Consent Source|

Direct Consent Source
A Source can be direct and specific: “Receive a newsletter every month”.

Indirect Consent Source
A Source can also be indirect: “As a member of an organization, we need to inform you about changes in our
statutes, invite you to meetings etc.” Often these are known as “legitimate interest”.

10.1.1 Consent Source examples

A source of consent is a repeatable type of consent. Consider these examples:
» User signs up as a member of a website/organization Consent Source
» User signs up for a specific newsletter Consent

A direct source can most likely be enabled and disabled directly on the website, while indirect sources are often derived
from something else.

21

https://github.com/d0ugal/django-consent

django-consent, Release 0.9

10.1.2 Users can manage consent

There are very few types of consent that users cannot manage. You can probably imagine exactly those and then make
the rest configurable.

10.1.3 Storing changes to consent

You might be looking for one of the following two types of changes:
» User changes their Consent to a specific Consent Source - gives or withdraws.
* You change the Consent Source - you cannot do that.

So the possibilities are actually quite limited. We can log when users give and withdraw consent to document what has
happened.

But under no circumstances should we change anything or add anything to a Consent Source. We can of course fix a
typo. But consent becomes meaningless if we modify it after it’s given.

10.1.4 Refactoring consent

If users have given consent and then the Consent is attached to a Consent Source instance, then the source can often be
broken down and replaced by simpler instances of Direct Consent Source.

22 Chapter 10. django-consent 0.2 (2011)

CHAPTER
ELEVEN

INDICES AND TABLES

* genindex
* modindex

¢ search

23

django-consent, Release 0.9

24 Chapter 11. Indices and tables

C

Consent, 21
Consent Source, 21

D

Direct Consent Source, 21

Indirect Consent Source, 21

INDEX

25

	What is this?
	Features
	Open design questions
	Privacy by Design
	Privacy by Default
	Legal disclaimer
	Usage
	Development
	Demo project
	django-consent 0.2 (2011)
	Consent Types
	Consent Source examples
	Users can manage consent
	Storing changes to consent
	Refactoring consent

	Indices and tables
	Index

